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Overview

• Energy, momentum, and density preservation can be achieved with a
direct Galerkin discretization using a second order basis. This
property translates also to temporal discretization as long as the
nonlinear system of equations is solved to machine precision.

• Positivity preservation algebraically, without breaking the inherent
conservation laws, has been a challenge.

• Exponential mapping of the distribution function together with
so-called discrete gradient methods for temporal discretization,
succeeds in providing the conservation laws, strict positivity, and a
unique, physically exact equilibrium state.

• See arXiv:1804.08546 for the full story and a detailed list of relevant
references.
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Properties of the collision
operator



Time- and space-continuous collisional evolution

A distribution function f(v, t) : R3 × R≥0 7→ R≥0 is assumed to evolve
according to the equation

∂f

∂t
=

∂

∂v
·
∫
R3

Q(v − v′) ·
(
f(v′)

∂f

∂v
− f(v) ∂f

∂v′

)
dv′, (1)

corresponding to the dynamics driven by the nonlinear Landau collision
operator. The dyad Q(ξ) = (I− ξ̂ξ̂)/|ξ| in the above expression is an
inversely scaled projection matrix with an eigenvector ξ corresponding to
zero eigenvalue, and ξ̂ = ξ/|ξ|
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A non-standard weak formulation of the problem

Given an arbitrary time-independent test function u(v), the collisional
relaxation problem can be formulated in a weak sense

d

dt
M(u, f) = Cf (u, ln f). (2)

The symmetric, bilinear forms M and Cf are defined according to

M(u,w) =

∫
R3

uw dv, (3)

Cf (u,w) = −
1

2

∫∫
R3×R3

(
∂u

∂v
− ∂u

∂v′

)

· f(v)Q(v − v′)f(v′) ·
(
∂w

∂v
− ∂w

∂v′

)
dvdv′. (4)

The form Cf (u,w) is negative semidefinite, with a left-right null-space
consisting of functions φ = {|v|2,v, 1}.
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Properties of the collision operator

The functions φ(v) = {|v|2,v, 1} generate invariant forms M(φ, f)

corresponding to conservation of energy, momentum and density.

The equilibrium condition Cf (u, ln f) = 0, with respect to arbitrary u,
requires that ln f is a linear combination of the functions
φ = {|v|2,v, 1}, f corresponding to a Maxwellian.

Since M(1, f) is an invariant and Cf (u, u) ≤ 0, one finds that
∂tM(− ln f, f) ≥ 0, corresponding to entropy production.

Sign preservation: assuming f to be at least twice differentiable and
non-negative, then, at a point v? where f(v?) = 0, ∂vf(v?) = 0, and
∂2vvf(v

?) is positive semi-definite, the evolution equation provides

∂f(v?)

∂t
=

∫
R3

Q(v? − v′)f(v′)dv′ : ∂
2f(v?)

∂v∂v
≥ 0. (5)
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Spatial discretization



Introduce an exponentially-mapped Galerkin projection

Use the “ln f hint” in the weak formulation and choose an ab initio
positive discretization

fh = exp(gh), gh =
∑
i∈I

gi(t)ψi(v), (6)

with {ψi}i∈I a second order Galerkin basis with compact support, and
{gi}i∈I the degrees of freedom for gh.

Finite-dimensional weak formulation using a test function u = ψi∑
j∈I

M(ψi, fhψj)
dgj

dt
=
∑
j∈I

Cfh(ψi, ψj)g
j , ∀ i ∈ I. (7)

Here, the integrals within the forms M and Cf are naturally limited to
the domain of support for the basis. Also, note that the square matrices
M(ψi, fhψj) and Cfh(ψi, ψj) depend on the degrees of freedom via fh,
and that while M(ψi, fhψj) is sparse, Cfh(ψi, ψj) is not.
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Finite-dimensional collisional invariants

On the given mesh, the finite-dimensional versions of the energy,
momentum, and density functionals can be written as

(E,P , N) =
∑
i∈I

(ei,vi, 1i)M(ψi, fh). (8)

The coefficients {ei}i∈I , {vi}i∈I , and {1i}i∈I correspond to the
expansion coefficients with respect to the chosen Galerkin basis for the
functions (|v|2,v, 1), i.e.,

|v|2 =
∑
i∈I

eiψi(v) v =
∑
i∈I
viψi(v), 1 =

∑
i∈I

1iψi(v). (9)
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Conservation of the finite-dimensional invariants

The time derivatives of energy, momentum, and density vanish identically

dE

dt
=
∑
i,j∈I

eiM(ψi, fhψj)
dgj

dt
=
∑
j∈I

Cfh

(∑
i∈I

eiψi, ψj

)
gj = 0, (10)

dP

dt
=
∑
i,j∈I

viM(ψi, fhψj)
dgj

dt
=
∑
j∈I

Cfh

(∑
i∈I
viψi, ψj

)
gj = 0, (11)

dN

dt
=
∑
i,j∈I

1iM(ψi, fhψj)
dgj

dt
=
∑
j∈I

Cfh

(∑
i∈I

1iψi, ψj

)
gj = 0. (12)

This follows from the equations of motion for the degrees of freedom (7),
the bilinearity and the null-space of the form Cf (u,w), and the requested
property that the basis {ψi}i∈I reproduces quadratic functions exactly.
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H-theorem: equilibrium

Note that {ei}i∈I , {vi}i∈I , and {1i}i∈I are the only eigenvectors of the
matrix Cfh(ψi, ψj), that correspond to zero eigenvalues.

Hence the equilibrium state gieq is a linear combination

gieq = a ei + b · vi + c 1i, (13)

which, within the support of the Galerkin basis, corresponds to the
numerical distribution function

fh,eq = exp
(
a|v|2 + b · v + c

)
. (14)

Because the energy, momentum, and density are conserved, the
coefficients a, b, and c are uniquely determined in terms of the moments
of a given initial state.

9



H-theorem: entropy production

Note that the entropy S = −
∫
fh ln fhdv can be written as

S = −
∑
i∈I

M(fh, ψi)g
i. (15)

It’s time derivative then becomes

dS

dt
= −

∑
i∈I

M(fh, ψi)
dgi

dt
−
∑
i,j∈I

dgj

dt
M(ψjfh, ψi)g

i

= −dN
dt
−
∑
i,j∈I

Cfh(ψj , ψi)g
igj ≥ 0. (16)

The last line follows from the density conservation and the fact that the
form Cf (u,w) is negative semidefinite, with the only nontrivial zero
solution being a linear combination of the operator’s null-space,
corresponding to the equilibrium state.
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Finite-dimensional metriplectic
structure



Rearrange the finite-dimensional system of equations

Multiply (7) with the inverse of M(ψi, fhψj)

dgk

dt
=
∑
i,j∈I

M−1(ψk, fhψi)Cfh(ψi, ψj) g
j , ∀ k ∈ I. (17)

Use the finite-dimensional entropy (15), it’s derivative, and invert for

gj + 1j = −
∑
`∈I

M−1(ψj , fhψ`)
∂S

∂g`
, ∀ j ∈ I. (18)

Use the fact that vector 1j is an eigenvector of the matrix Cfh(ψi, ψj)

with a zero eigenvalue, this gives

dgk

dt
= −

∑
`∈I

Gk`(g)
∂S

∂g`
, ∀ k ∈ I, (19)

where we have collected the individual matrices together into

Gk`(g) =
∑
i,j∈I

M−1(ψk, fhψi)Cfh(ψi, ψj)M
−1(ψj , fhψ`). (20)
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Finite-dimensional metriplectic structure

Using the chain rule, time derivative of a generic function U(g) becomes

dU

dt
= −

∑
k,`∈I

∂U

∂gk
Gk`(g)

∂S

∂g`
, ∀ k ∈ I, (21)

with the same matrix as previously

Gk`(g) =
∑
i,j∈I

M−1(ψk, fhψi)Cfh(ψi, ψj)M
−1(ψj , fhψ`). (22)

The finite-dimensional metriplectic structure is then identifed as

dU

dt
= (U,−S) (23)

where the bracket with respect to arbitrary functions A(g) and B(g) is

(A,B) =
∑
k,`∈I

∂A

∂gk
Gk`(g)

∂B

∂g`
, ∀ k ∈ I (24)

The invariants are conserved and entropy produced as previously.
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Temporal discretization



Discrete Gradient methods: generic recipe

Given S(g), consider an ODE of the form

dgk

dt
= −

∑
`∈I

Gk`(g)
∂S

∂g`
, ∀ k ∈ I. (25)

Denote time instances with g(δt) = g1 and g(0) = g0. Discrete gradient
methods approximate the ODE according to

gk1 − gk0
δt

= −
∑
`∈I

Gk`[g0, g1]
∂S

∂g`
[g0, g1], ∀ k ∈ I. (26)

The operator ∂A/∂g`[g0, g1] is a discrete gradient and required to satisfy∑
`∈I

∂A

∂g`
[g0, g1] (g

`
1 − g`0) = A(g1)−A(g0),

∂A

∂g`
[g, g] =

∂A

∂g`
(g). (27)

Many such operators are known in the literature. Furthermore, requiring
Gk`(g, g) = Gk`(g) guarantees that the limit δt→ 0 collapses (26) to
the correct time-continuous ODE (25).
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Discrete Gradient methods: entropy production

Using (27) and (26), the discrete evolution of a function U(g) satisfies

U(g1)− U(g0) = −δt
∑
k,`∈I

∂U

∂gk
[g0, g1]Gk`[g0, g1]

∂S

∂g`
[g0, g1]. (28)

Hence, as long as the matrix operator Gk`[g0, g1] is negative semidefinite,
entropy production will be guaranteed, according to

S(g1)− S(g0) = −δt
∑
k,`∈I

∂S

∂gk
[g0, g1]Gk`[g0, g1]

∂S

∂g`
[g0, g1] ≥ 0. (29)

But what should the expression for Gk`[g0, g1] be? And how will it
guarantee the energy, momentum, and density conservation?
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Discrete Gradient methods: Casimir evolution

For all invariants C = (E,P , N), with ci = (ei,vi, 1i), we have

∂C

∂gk
=
∑
i∈I

ciM(ψi, fhψk). (30)

A discrete gradient of the Casimirs is thus defined according to

∂C

∂gi
[g0, g1] =

∑
k∈I

ckMki[g0, g1], (31)

where Mki[g0, g1] is required to satisfy Mki[g, g] =M(ψi, fhψk). Hence
the discrete evolution of the Casimirs satisfies

C(g1)− C(g0) = −δt
∑
i∈I

∑
k,`∈I

ciM ik[g0, g1]Gk`[g0, g1]
∂S

∂g`
[g0, g1]. (32)
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Discrete Gradient methods: Casimir invariance

To guarantee the invariance C(g1)− C(g0) = 0, we should choose

Gk`[g0, g1] =
∑
i,j∈I

M
−1
ki [g0, g1]Cfh(ψi, ψj)M

−1
j` [g0, g1], (33)

where M
−1
ij [g0, g1] is the inverse of M ij [g0, g1]. This satisfies also

Gk`(g, g) = Gk`(g). The choice (33) then provides the desired result

C(g1)− C(g0) = −δt
∑
i∈I

∑
j,`∈I

ciCfh(ψi, ψj)M
−1
j` [g0, g1]

∂S

∂g`
[g0, g1] = 0,

(34)

which follows from the property that the basis {ψi}i∈I can present the
functions φ = {|v|2,v, 1} exactly, and due to the null space of the form
Cf (u,w), which together lead to∑

i∈I
ciCfh(ψi, ψj) = 0, ∀ j ∈ I. (35)
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Discrete Gradient mehods: uniqueness of equilibrium

For an equilibrium state to exist, one must have g1 = g0 = geq. This
requirement, and the evolution equation (26), provides∑

`∈I

Gk`[geq, geq]
∂S

∂g`
[geq, geq] = 0, ∀ k ∈ I. (36)

Next, using the defining properties ∂S/∂g`[geq, geq] = ∂S/∂g`(geq) and
Gk`[geq, geq] = Gk`(geq), we obtain∑

`∈I

Gk`(geq)
∂S

∂g`
(geq) = 0, ∀ k ∈ I. (37)

From here the uniqueness of the equilibrium state follows trivially after
using (18) and the null-space argument, leading to the observation that
the numerical equilibrium state is given by

fh,eq(v) = exp(a|v|2 + b · v + c), (38)
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Sparse system for iterative
solution



Average Discrete Gradient

Use the second order O(δt2) average discrete gradient

∂A

∂g`
[g0, g1] =

1∫
0

∂A

∂g`
((1− ξ)g0 + ξg1)dξ. (39)

Define the short notations

gh0 =
∑
k∈I

gk0ψk, gh1 =
∑
k∈I

gk1ψk. (40)

Compute the matrix

M ij [g0, g1] =

∫
ψi

exp (gh0)− exp (gh1)

gh0 − gh1
ψj dv, (41)

and the vector

∂S − 1

∂g`
[g0, g1] = −

∫
ψ`

(gh0 − 1) exp (gh0)− (gh1 − 1) exp (gh1)

gh0 − gh1
dv.

(42)
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Sparse form suitable for iterative solution

Put everything together and obtain a sparse iterable system

∑
k∈I

M ik[g0, g1]
gk1 − gk0
δt

= −
∑
j∈I

Cfh,1/2
(ψi, ψj)Fj , ∀ i ∈ I, (43)

∑
j∈I

M ij [g0, g1]Fj =
∂S − 1

∂gi
[g0, g1], ∀ i ∈ I. (44)

Given g0, solving this system to machine precision for g1 provides the
conservation laws the machine precision as well.
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